DUO-CHEK®

brands you trust.

DUO-CHEK® High Performance Non-Slam Check Valves

Key Features and Typical Applications

Key Features & Benefits

- Dual-plate designs that are compact and lightweight for efficient seating, operation and lower installation cost
- Independent springs with long legs to prevent seat scrubbing and provide non-slam performance
- Retainerless valve design without body penetration for critical service applications

Double Flanged (Retainerless)

Typical Applications

- Petroleum Refining
- Oil and Gas Production
- Chemicals and Petrochemicals
- Power Generation
- Steel/Primary Metals
- Marine
- Water and Wastewater
- Pulp and Paper

Duo-Chek® The High Performance Non-Slam Check Valve

Duo-Chek® high performance non-slam check valves are the original Mission Manufacturing Company wafer check valves introduced to the market in the late 50's. The valve is available in the sizes, pressure classes and configurations required to meet the most demanding of applications. Product range includes, but is not limited to:

- Sizes: 2" to 88"
- ASME Pressure Class 125 through 2500
- API 6A and 6D pressure classes
- DIN, JIS, BS, AS, and ISO standards are also available
- Wafer, lug, double flanged and extended body styles
- Wafer configurations available in retainered and retainerless style
- · Body Materials:

Cast Iron, Carbon Steel, Stainless Steels, Duplex Stainless Steel, Super Duplex

- Resilient Seat Materials:
 - EPDM, Buna-N, Neoprene, and Viton-B®
- Integral and overlaid metal seats also available
- End Connections:

Raised Face, Plain Face, Ring Joint, Weld-End, Hub-End

Viton® is a registered trademark of DuPont Performance Elastomers L.L.C.

Industry Standards*				
API 594	Valve Design			
API 598	Valve Pressure Testing and Inspection			
ASME B16.5 & B16.47	Flanges			
ASME B16.34	Pressure/Temperature Ratings			
API 6D	Pipeline Valves			
API 6A	Production Valves			
(PED) 97/23/EC	Pressure Equipment Directive			

*Consult factory for other specification requirements.

Spring action closes plates independently. (6" and larger)

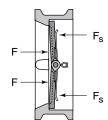
Long-leg spring action allows plates to open and close without seat scrubbing.

Dual plate lightweight design for efficient seating and operation.

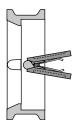
Wafer Style H (Retainerless)

Hinge support sleeve reduces friction and minimizes water hammer through independent plate suspension (on larger sizes).

Specify Duo-Chek® ...to your Advantage


Leading engineers specify Duo-Chek® for check valve applications because it provides high performance. Extensive research and testing with demonstrated performance has earned worldwide recognition, unmatched in the industry.

The Duo-Chek® wafer valve design is generally stronger, lighter, smaller, more efficient and less expensive than conventional swing check valves. Its design meets API 594 which is approximately one fourth the face to face dimension and 15% to 20% the weight, on most popular sizes, making them less expensive than a swing check valve. It is much easier to install between standard gaskets and line flanges. The savings compound during installation due to ease of handling and only one set of flange studs is required. Therefore, it is more cost effective to install, and also to maintain.

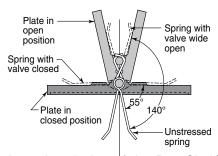

The Duo-Chek® also offers special design features that make it a high performance non-slam check valve. These include a scrub-free opening, and in most sizes a unique independent spring design as well as an independent plate support system. These features may not be found in other check valves. Other configurations offered include lug, double flange and extended body.

Plates in closed position. Top view.

Heel opens first as flow begins.

Plates fully opened (85°)

Plate toe closes first as flow decreases.


Plates fully seated for bubble-tight shutoff.

The innovative dual-plate design of the Duo-Chek® employs two spring-loaded plates (disc halves) suspended on a central vertical hinge pin. As flow begins, the plates open in response to a resultant force (F) which acts as the center of the sealed surface area. The contact point of the reacting spring leg's force (Fs) acts beyond the center of the plate area, causing the heel to open first. This prevents rubbing of the seal surface prior to normal plate opening, eliminating wear.

As the velocity of flow decreases, torsion spring action reacts automatically. This moves the plates closer to the body seats, reducing the distance and time of travel for closure. By having the plates closer to the body seats at the time of flow reversal, the valve dynamic response is greatly accelerated. This dramatically reduces the water hammer effect for non-slam performance.

At closing, the point of spring force causes the toe of the plates to close first. This prevents dragging of the heels of the plates and maintains seal integrity for much longer periods.

Independent Spring Design

A spring design of the Duo-Chek® (sizes 6" and larger) allows higher torque to be exerted against each plate with independent closing in response to the process stream. Testing has proved this action provides up to 25% improvement in valve life and 50% reduction in water hammer.

Each of the dual plates has its own spring or springs, which provide independent closing action. These independent springs undergo less angular deflection, only 140° as compared to 350° for conventional springs with two legs.

Independent Plate Suspension Design

The Duo-Chek® unique hinge design reduces friction forces by 66%, which improves valve response significantly. Support sleeves are inserted through the outboard hinges so that the upper hinge is independently supported by the lower sleeve during valve operation. This allows both plates to close at the same time for quick response, and excellent dynamic performance.

Design Features

Features	Benefits				
	Installs between mating flanges with 10 to 20% the weight of flanged swing				
Lightweight and Compact Wafer Design	checks in popular sizes - Saves money in initial valve cost and provides				
	lower installation cost.				
	Plate heel is lifted first by design to prevent seat wear. Employs two spring-				
Dual Plate, Flat Seat Design	loaded plates with flat seats - Gives superior performance and tight				
	shutoff to meet industry standards.				
	Maximum deflection of 140°, provides improved valve response and				
Independent Spring Action	longer life - Saves money with longer valve life and improved system				
	performance by reducing water hammer.				
Independent Plate Suspension with	Improves valve response and reduces friction forces by 66% - Further				
Unique Hinge Design (larger sizes)	assurances of non-slam performance with faster valve response.				
Simple, External Body Geometry	Configuration simplifies valve insulation - Saves money.				
Variety of Body Designs Available	Provides options to suit application needs - Eases your selection process				
Lug and Double Flange	by utilizing the industry leader as your single source.				
Wide Variety of Materials	Versatility for many services - Satisfies more application needs.				
Flexibility in Installation Position	Provides more rigidity than pipe, eliminating concerns of pipe bending loads				
Tioxismity in motanation resident	of flanged valves - Safety against thermal or seismic catastrophes.				
Body Strength and Rigidity	Some sizes suitable for horizontal or vertical up positions - Simplifies piping				
Doug Chongan and ringianty	design, eliminates constraints that swing checks create.				
	For critical service applications, prevents possible escape of unwanted				
Retainerless Duo-Chek® Design	and/or hazardous materials to atmosphere - Provides safety in critical				
Eliminates Body Penetrations	services by eliminating environmental concerns. Standards in Lug				
	and Double Flange Designs.				
	In horizontal position flow allows plates to function freely and full open under				
Vertical Hinged Design	lower flow conditions as compared to swing check - Reduces pressure				
	loss, improves dynamic response and eliminates valve chatter.				
Special Valves Meet Market Needs:	Wide size range, pressure range and added options allow further market				
Special Lined Hub Ends	needs to be met - Reliance on world's largest wafer check line to supply				
Weld Ends	more needs.				
PED Certified (CE) Levy Temporature Applications Crystage					
Low Temperature Applications - Cryogenic ABS Certified					
CRN Registration					

DUO-CHEK®

Applications

A wide variety of body designs, materials, and trim make Duo-Chek® valves exceptionally versatile and suitable for a multitude of liquid and gas fluid applications.

Some of the major markets and typical applications are depicted here.

Oil and Gas Production

Centrifugal Compressor Discharge Fire Water Lines Oil/Steam Separation Steam and CO₂ Injection Gas/Oil Gathering Systems Flowlines Wellheads Regasification Liquidfaction

Power Generation

Steam
Condensate
Boiler Feed Pumps
Cooling Towers
Service Water Recirculators
River Water Intake

Petroleum Refining

Hydrogen Cracking Steam Crude Oil Gasoline Visbreakers Naphtha Sulfur

Petrochemicals

Ethylene Propylene Steam Reboilers Gases

Chemicals

Chlorine
Phosgene
Aromatics
Polymers
Acids
Air Separation
Caustics

Water and Wastewater

Distribution Lines
Pumping Stations
Sewage Plant Blower Discharge
Chemical Treatment
Fire Protection Systems
HVAC Systems
Desalination

Steel/Primary Metals

Quench Lines
De-Scaling
Continuous Casters
Steam
Condensate
Strippers
Electro-Galvanizing

Pulp and Paper

Bleaching Lines
Black Liquor
Green Liquor
White Water
Steam
Chemical Recovery

Marine

Oil Tankers
Tanker Loading Terminals
Offshore Platforms
Sub-Sea Manifolds
Terminal Transfer Lines
Barge Unloading Lines
Shipboard Services

Valve Configurations

Style G Retainered Wafer

Sizes 2" - 88"

- ASME Classes 125 2500
- Retainered Wafer Design
- Dimensions pages 13-14

Style H Retainerless Wafer

Sizes 2" - 88"

- ASME Classes 150 2500
- Dimensions pages 13-14

Retainerless Wafer Double Flange Valves

Sizes 8" - 88"

- ASME Classes 150 900
 - Sizes & Dimensions page 15

Retainerless Wafer Lug Valves

Sizes 2" - 24"

- ASME Classes 150 2500
- Sizes & Dimensions page 16

Style X

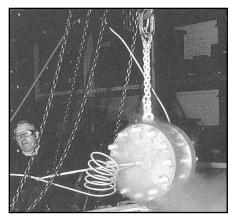
Extended Body Wafer

Sizes 10" - 54"

- ASME Classes 150 2500
- · Designed for extremely fast opening conditions
- Sizes & Dimensions page 17

DUO-CHEK®

Specials


Hub End Valves

Valves with Hub ends may be furnished for use with hub end, clamp-style connections. These end connections simplify installation procedures in systems that utilize them. Please contact your sales office for information regarding sizes and pressure ratings available, and other hub end connections such as Spolock, Seaboard Lloyd, etc.

Butt Weld Valves

Valves with butt weld ends may be furnished for piping systems designed for welded system components to eliminate potential joint leak paths. See Ordering Information for proper figure number designation, so that weld-end preparations match the mating pipe schedules.

Cryogenic Valves

Duo-Chek® valves may be furnished for subatmospheric to cryogenic temperatures -58°F through -321°F(-50°C through -196°C). Special materials of construction such as low temperature alloy steels, austenitic stainless steel, aluminum bronze or Monel® are generally required.

Coated & Lined Valves

Duo-Chek® valves may be furnished with Other Duo-Chek® specials furnished linings, when specified, for abrasion or corrosion resistance. Linings include Natural • Rubber, Neoprene, and others. All body • surfaces of lined valves are covered with the specified material, eliminating the need • for gaskets. Hinge and stop pin holes are encapsulated to seal them against line fluids. •

Solid alloy valves are recommended for extremely corrosive applications. A variety of coatings may be provided on request to resist corrosion or abrasion. Some of the commonly specified coatings include epoxies, coal tar derivatives and sacrificial zinc primers. Please discuss your requirements with your sales office.

Other Specials

- Valves to comply with NACE MR0103
- Valves cleaned for liquid oxygen (LOX) service
- Valves prepared for Food Service (austenitic stainless steel)
- Special testing for valves, including radiography, magnetic particle, dye penetrant, ultrasonic, helium leak, etc.

Monel® is a registered trademark of Special Metals Corporation.

Ordering Information

Figure Number System

Size Style

Pressure Class Body & Plate 15

Seal

End Connection

Body Configuration Modification Number 9

DESCRIPTION: 24" Style H, ASME Class 150, Carbon Steel Body, Metal Seal, raised face flanges, with double flange body, (modification number indicates Inconel® X spring)

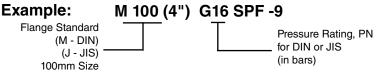
Valve Size				
Nominal valve sizes are expressed inches or millimeters.	l in			

In Inches:

For use with ASME, API and B and A Flange Standards.

In Millimeters:

For use with DIN, or JIS rated valves (size preceded by "M" for DIN, or "J" for JIS)


Style						
Ordering Letter	Body Type	Size Range				
Н	Retainerless Duo-Chek® Design Wafer, Lug or Double Flange	2" through 88" (50mm through 2200mm)				
G	Wafer, Retainered	2" through 88" (50mm through 2200mm)				
Х	Extended Body Design	10" through 54" (150mm through 1350mm)				
W*	Bodies with Integral Weld-Ends	2" through 72" (50mm through 1800mm)				

^{*}Weld-end valves also require the additional designation of the pipe schedule they are designed to fit.

Pressure Classes								
AS	ASME API [△]		DIN /	DIN / JIS ¹		BS / AS ²		
Ordering No.	Class	Ordering No.	Class	Ordering PN No. Rating		Ordering No.	Table	
12	125	21	2000	Flange Standard:	6			
15	150				10	B - BS	Α	
25	250	31	3000	M - DIN	16		thru	
30	300				25	A - AS	T	
40	400	51	5000	J - JIS	40			
60	600				64			
90	900	101	10000		100			
150	1500				160			
250	2500	151	15000		250			
450	4500				320			

Δ API Class is shown in psig, cold working pressure.

Metric valves with DIN or JIS standard flanges are designated by having the nominal size expressed in millimeters, preceded by "M" or "J". Flange ratings in PN numbers are then listed after the valve style, as in ASME or API Valves.

This specifies a metric valve, designed to fit between DIN flanges. Nominal size is 100 millimeters (corresponding to 4"), Style G Duo-Chek® with a pressure rating of 16 bars, carbon steel body and plate, metal seat, raised face end connections and Inconel® X spring.

2 Valves designed for use with British Standard 10 or Australian Standard 2129 are defined by adding two letters between the style of construction and pressure rating. First letter designates the standard, and the second letter denotes the table in that standard.

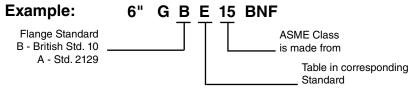


Figure number lists a 6" Style G Duo-Chek®, designed to fit between British Standard 10, Table E Flanges, using a Class 150 Valve, having an aluminum bronze body and plates, Neoprene seal and raised face end connections.

Ordering Information

	Body and Plates							
Ordering Letter	Material	Specification	Ordering Letter	Material	Specification			
BA C F H K L M S	Ni-Aluminum Bronze 316 Stainless Steel Alloy 20 Cast Iron with Al. Br. Plates Hastelloy® C C12 Alloy Steel Monel® Carbon Steel	ASTM B148, Alloy 958 ASTM A351, Gr. CF-8M ASTM A351, Gr. CN7M ASTM A126, class 40 ASTM B148, (952) A494, Gr. CW12MW ASTM A217, Gr. C12 (9% Cr) ASTM A494, Gr. M30C ASTM A216, Gr. WCB	T U V Y DZ EA GC TT EB	317 S.S. WC6 Alloy Steel 347 S.S. C5 Alloy Steel 22% Duplex 254 SMO Stainless LCC Low Temp. Steel Titanium 25% Super Duplex	ASTM A351, Gr. CG-8M ASTM A217, Gr. WC6 (11/4% Cr) ASTM A351, Gr. CF-8C ASTM A217, Gr. C5 (5% Cr) ASTM A995, Gr. 4A UNS S31254, (ASTM CK3MCuN) ASTM A352, Gr. LCC ASTM B367, Gr. C2 ASTM A995, Gr 6A			

Hastelloy® C is a registered trademark of Haynes International, Inc.

Seal ¹				End Connections		Special Body Configurations	
Ordering Letter	Material	Operating Te	emperature °F	Ordering Letter	Connections	Designation No.	Configuration
A M N P	EPDM Buna-N Neoprene As Body Viton-B®	-18 to 121 -30 to 121 -40 to 121 -196 to 538 -20 to 204	0 to 250 -22 to 250 -40 to 250 -321 to 1000 -4 to 400	F G P R W	Serrated face Hub End Plain Face (non serrated, Class 125) Ring Joint Weld-End	None (Blank) 1 2	Wafer Style, inserted between mating flanges with studs spanning entire length Lug design w/threaded holes bolted from each end Lug design with through-bolt holes to protect studs
	Spring Selec	tion Guid				3	Double flanged design with valve flanges bolted to individual line
	Material pe 316 S.S.	°C	°F				flanges
1 ''	I® V 750	050 +- 507	400 to 4000				

¹ This range of operating temperatures is for general guidance. The range varies with application, body and plate material.

² For unique service conditions other spring materials are available. Please consult factory.

Common Modifications							
Mod No.	Material Description	API Trim No.*	Trim Description				
-9	Inconel® X-750 Springs						
-14	316 S.S. Plate, Pins						
-39	410 S.S. Plate, Pins & Inconel® X-750 Springs	1					
-169	410 S.S. Plate, Pins, Inconel® X-750 Springs and 410 S.S. Overlay Seat	1	Type 410 S.S.				
-201	316 S.S. Plate, Pins, Inconel® X-750 Springs						
-233	316 S.S. Plate, Pins, Inconel® X-750 Springs and 316 S.S. Overlay Seat	10	Type 316 S.S.				
-491	Hard Face Plate, 316 SS, Pins, Inconel® X-750 Springs and Hard Face Seat	5	Hard Faced Seats				
-559	Inconel® X-750 Spring and conformance to NACE MR0103	1					
-772	Monel® Plate, Pins, Springs, Bearings and Monel® Overlay Seat	9	Monel [®]				
131E	410 S. S. Plate, pins, Inconel X-750 Springs and Hard Face Seat	8	F6 and Hard Faced				
385E	316 S.S. Plate, Pins, Inconel X-750 Springs and Hard Face Seat	12	316 and Hard Faced				

^{*}Steel and steel alloy based metals.

NACE MR0103 compliance offered on metal seated valves only.

Additional Engineered Check Products

Noz-Chek®

Full Body Nozzle Check Valves

- Sizes 2" 84"
- ASME Classes 150 4500
- Flanged, Hub-End, Weld-End
- Iron, Steel, and Stainless Steel
- ASME, DIN, JIS Standards

Uni-Chek®

Single-Disc Check Valves

- Sizes 2" 36"
- ASME Classes 125 300
- Flanged, Plain, or Serrated Ends
- Cast Iron, Carbon Steel, and Stainless Steel
- Variety of external shaft options available

Compac-Noz®

Compact Body Nozzle Check Valves

- Sizes 12" 60"
- ASME Classes 150 4500
- Flanged, Hub-End, Weld-End
- Iron, Steel, and Stainless Steel
- ASME, DIN, JIS Standards

Krombach®

Steam Extraction Check Valves

- Sizes 6" 72"
- ASME Classes 150 300
- Double Flanged & Butt Weld Ends
- · Steel, Stainless Steel and Welded Design